NAD + -dependent Formate Dehydrogenase from Plants

نویسندگان

  • A.A. Alekseeva
  • S.S. Savin
  • V.I. Tishkov
چکیده

NAD(+)-dependent formate dehydrogenase (FDH, EC 1.2.1.2) widely occurs in nature. FDH consists of two identical subunits and contains neither prosthetic groups nor metal ions. This type of FDH was found in different microorganisms (including pathogenic ones), such as bacteria, yeasts, fungi, and plants. As opposed to microbiological FDHs functioning in cytoplasm, plant FDHs localize in mitochondria. Formate dehydrogenase activity was first discovered as early as in 1921 in plant; however, until the past decade FDHs from plants had been considerably less studied than the enzymes from microorganisms. This review summarizes the recent results on studying the physiological role, properties, structure, and protein engineering of plant formate dehydrogenases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stress Induction of Mitochondrial Formate Dehydrogenase in Potato Leaves

In higher plants formate dehydrogenase (FDH, EC 1.2.1.2.) is a mitochondrial, NAD-dependent enzyme. We previously reported that in potato (Solanum tuberosum L.) FDH expression is high in tubers but low in green leaves. Here we show that in isolated tuber mitochondria FDH is involved in formate-dependent O2 uptake coupled to ATP synthesis. The effects of various environmental and chemical factor...

متن کامل

Formate oxidation and oxygen reduction by leaf mitochondria.

Mitochondria isolated from the leaves of several plant species were investigated for the presence of NAD-linked formate dehydrogenase. The NADH produced was oxidized by the electron transport sequence and was coupled to ATP synthesis. The amounts of formate dehydrogenase, and, thereby, the capacity for formate-dependent O(2) uptake, varied greatly among species. While no activity was detectable...

متن کامل

Oxidation of formate by peroxisomes and mitochondria from spinach leaves.

1. Spinach (Spinacia oleracea L.) leaf extracts catalyse the oxidation of formate to CO(2). 2. Two enzymic systems are responsible for this oxidation, the peroxidatic action of catalase (EC 1.11.1.6) and NAD-dependent formate dehydrogenase (EC 1.2.1.2). 3. Formate dehydrogenase is mainly, if not exclusively, located in the mitochondria. This enzyme has a pH optimum of 6-6.5 and a K(m) for forma...

متن کامل

Efficient CO2-Reducing Activity of NAD-Dependent Formate Dehydrogenase from Thiobacillus sp. KNK65MA for Formate Production from CO2 Gas

NAD-dependent formate dehydrogenase (FDH) from Candida boidinii (CbFDH) has been widely used in various CO2-reduction systems but its practical applications are often impeded due to low CO2-reducing activity. In this study, we demonstrated superior CO2-reducing properties of FDH from Thiobacillus sp. KNK65MA (TsFDH) for production of formate from CO2 gas. To discover more efficient CO2-reducing...

متن کامل

Effect of pH on kinetic parameters of NAD+-dependent formate dehydrogenase.

To define in detail the molecular mechanism of NAD+-dependent formate dehydrogenase, the pH dependences of various kinetic and spectroscopic parameters have been studied: Vmax, Km (NAD+), Km (formate), inhibition constants for structural analogues of substrate (NO3-) and product (CNS-, CNO-, N3-), CD and fluorescence properties. The value of Vmax, rate-limiting hydride transfer, is nearly const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2011